“Education is not preparation for life; education is life itself.”

—John Dewey, educator and Laboratory Schools founder
LAB’S MISSION

The Laboratory Schools are home to the youngest members of the University of Chicago’s academic community. We ignite and nurture an enduring spirit of scholarship, curiosity, creativity, and confidence. We value learning experientially, exhibiting kindness, and honoring diversity.

In 1896, just two years after the University of Chicago was founded, Professor John Dewey—now known the world over as one of the great minds in education—established the Laboratory Schools as a place to explore and implement his theories on childhood education. Within a few years of starting the school, Dewey outlined the beliefs that continue to guide the Schools:

> Students benefit from an environment where teachers and students learn from each other.
> Students learn best through experimentation, reflecting on the conditions and consequences of action.
> By contributing to others, students develop their individuality and unique capacities to add to the common good.
> At its best, a school exemplifies a purer form of our society’s democratic principles so that students grow into adults who improve their world.

Just as they did when Lab started with only 36 students, these values still resonate and shape what we do. Lab has grown to serve more than 1,850 students, age 3 to 18, who come here to learn and be inspired every day.

The greatest testament to the power of a Laboratory Schools education has been our graduates. Lab alumni have a knack for making a difference in the world as professionals, academicians, artists, educators, researchers, public servants, and more.

Give your child an education built on more than a century of experience.
Lab facts at a glance

20 U-High Advanced Placement and Advanced Topic classes

35 High School sports teams 16 Middle School teams

Average class size Middle and High School: 16
Average class size grades N–5: 23

10:1 student/teacher ratio

Fully wireless campus

Alumni of note

Supreme Court Justice John Paul Stevens, ’37, AD’41, winner of the Presidential Medal of Freedom
Ned Rorem, ’40, Pulitzer Prize-winning composer
Janet Rowley, ’42, PHB’45, SB’46, MD’48, winner of the Presidential Medal of Freedom, the Lasker Award, and the National Medal of Science
Former Connecticut congresswoman Nancy Johnson, ’51
Former Connecticut congresswoman Nancy Johnson, ’51
Former Connecticut congresswoman Nancy Johnson, ’51

Garrick Utley, ’56, the first NBC reporter to cover the Vietnam war from Saigon
Illinois State Representative Barbara Flynn Currie, ’58, AB’68, AM’73
Paul Butterfield, ’60, blues musician and bandleader
Denise Jefferson, ’61, former director of the school of the Alvin Ailey American Dance Theater
Sherry Lansing, ’62, former chairman of Paramount Pictures and first woman president of a major Hollywood studio
Kennette Benedict, ’65, executive director of the Bulletin of the Atomic Scientists—keepers of the “doomsday clock”

Scores of individuals who have devoted their lives to education—from nursery school teachers to university presidents
Dozens of individuals committed to social and public service

Average composite ACT: 31.5
Average SAT: 686 critical reading 686 math 674 writing

2,051 students in 15 grades

25,000 volumes in the Lim Family Library, serving N–2

421 Lower School students

405 Middle School students

257 teachers of whom 80% hold advanced degrees

29,400 volumes in Pritzker Traubert Family Library, serving grades 3–5

30,000 volumes in Rowley Library, serving grades 6–8

15,000 volumes of color: more than 50%

100% of classrooms

405 Middle School students

421 Lower School students

150 classes offered each year in U-High

60% of families associated with the University of Chicago

52% of students live outside the Hyde Park/Kenwood community

2,051 students in 15 grades

25,000 volumes in the Lim Family Library, serving N–2

421 Lower School students

405 Middle School students

257 teachers of whom 80% hold advanced degrees

29,400 volumes in Pritzker Traubert Family Library, serving grades 3–5

30,000 volumes in Rowley Library, serving grades 6–8

15,000 volumes of color: more than 50%

100% of classrooms

405 Middle School students

421 Lower School students

150 classes offered each year in U-High

60% of families associated with the University of Chicago

52% of students live outside the Hyde Park/Kenwood community
a university-inspired environment like no other in Chicago

A great school is one thing. But a great school that is also part of a world-class research university? Now that is something entirely different.

Because the Laboratory Schools are part of the world-renowned University of Chicago, the importance of intellectual life—of thought and exploration—inflates everything we do across all aspects of our curriculum.

Families who choose to send their children to Lab care deeply about curiosity, inquiry, and education. All are attracted to this environment that creates and nurtures the hallmark habits of expansive thinking and complex problem-solving:

- **Intelectual curiosity** comes naturally to all children, and Lab fosters that curiosity by encouraging each child to seek paths of inquiry and interest.
- **Open-mindedness** is a tool that allows students to be flexible when solving problems and to accept differing points of view as viable solutions.

We wouldn't expect anything less from a school that exists in the heart of a research-based university.

And our graduates tell us that these habits, shaped at Lab and U-High, made them independent thinkers in college and have helped them to be successful throughout their lives.

A respect for evidence is found throughout the Laboratory Schools, from the physics lab to the humanities class. Students learn to shape their own opinions and then fully leverage evidence to reshape their ideas.

Because multiculturalism and diversity are essential to academic excellence, the Schools work to assemble a student body that reflects the many differences that shape our world—a major reason many families choose Lab.

Lab recognizes that diversity also registers in economic variances. To ensure that the best students are able to benefit from, and enhance, the Lab experience regardless of their ability to pay, Lab provides need-based financial aid at all grade levels and scholarships based on need and merit at the high school level.

Lab students of every age benefit from the University’s outstanding academicians and access to unmatched resources:

- Students across the school have special access to the Oriental Institute.
- Smart Museum of Art, Court Theatre, science laboratories, and sports and other University facilities.
- Nursery Schoolers learned from UChicago physicians who shared a specialized cell microscope and a preserved human brain.
- Fourth graders worked with palentologist and Professor Paul Sereno—Chicago’s own “Indiana Jones”—and members of his UChicago Fossil Lab to build “flesh models” from a resin replica of a Rajasaurus skull.
- A UChicago composer visited an eighth-grade music class weekly to give students a more hands-on approach to music. Projects included a “sound walk,” where the students visited sites—Rockefeller Chapel or the corner of 58th and Kimbark—to listen for the sounds at each location.
- Lab’s unique Summer Link program places qualified U-Highers in paid internships with University scientists and professors and businesses across the University and around the city.
- A UChicago composition visited an eighth-grade music class weekly to give students a more hands-on approach to music. Projects included a “sound walk,” where the students visited sites—Rockefeller Chapel or the corner of 58th and Kimbark—to listen for the sounds at each location.
- Lab’s unique Summer Link program places qualified U-Highers in paid internships with University scientists and professors and businesses across the University and around the city.
- Each year, at no additional expense, more than 20 U-Highers take courses at the University.

Lab draws a diverse group...

...from all around the city.

NOTE: MOST RECENT DATA AT TIME OF PUBLICATION.
a community of individuals

Teaching that allows individuals to flourish and embrace learning as a lifelong experience

At every age, the Laboratory Schools prepare children to be independent thinkers and creative problem-solvers. At the same time, teachers cultivate an environment where children are collaborative and supportive of one another, love learning, and see it as an integral part of who they are. Some very clear tenets ground everything we do:

- Education starts with the child. Because each child thinks and learns differently, Lab teachers develop curricula and activities that address the needs, interests, and styles of the specific students in their classroom.
- We support all aspects of a young person’s development. Teaching and education must address all the developmental needs of the child—academic and cognitive, social and emotional—so that children think and work to their fullest potential at any given stage.
- Authenticity and meaningful experiences are critical. Once a concept has been introduced, Lab teachers make it that much more meaningful by bridging disciplines to reinforce an idea, bringing the real world into the classroom or taking the class into the real world. By taking children to a working drawbridge or inviting an engineer to share actual plans, Lab allows children to see concepts in action.

Learning differences... tailoring teaching to the child

- Even within a challenging environment like Lab’s, it’s important to recognize that children learn in different ways and that even bright children may need tailored support. The Schools work to respond to the needs of each child while maintaining academic and evaluative standards.
- Teachers work to differentiate instruction in order to accommodate a variety of learning styles.
- Learning coordinators are available to work with teachers and families to assess and manage learning differences, and in rare instances may conduct screenings for younger children.
- Academic specialists work in the Primary and Lower Schools, where skills can vary widely and added support has proven to have the greatest benefit.

- At every age, counselors are available to work with students, faculty, and parents, as needed.

Students as real-world literary and art critics

- Even within a challenging environment like Lab’s, it’s important to recognize that children learn in different ways and that even bright children may need tailored support. The Schools work to respond to the needs of each child while maintaining academic and evaluative standards.
- Teachers work to differentiate instruction in order to accommodate a variety of learning styles.
- Learning coordinators are available to work with teachers and families to assess and manage learning differences, and in rare instances may conduct screenings for younger children.
- Academic specialists work in the Primary and Lower Schools, where skills can vary widely and added support has proven to have the greatest benefit.

- At every age, counselors are available to work with students, faculty, and parents, as needed.

Students as real-world literary and art critics

- Authenticity and meaningful experiences are critical. Once a concept has been introduced, Lab teachers make it that much more meaningful by bridging disciplines to reinforce an idea, bringing the real world into the classroom or taking the class into the real world. By taking children to a working drawbridge or inviting an engineer to share actual plans, Lab allows children to see concepts in action.

Even within a challenging environment like Lab’s, it’s important to recognize that children learn in different ways and that even bright children may need tailored support. The Schools work to respond to the needs of each child while maintaining academic and evaluative standards.

- Teachers work to differentiate instruction in order to accommodate a variety of learning styles.
- Learning coordinators are available to work with teachers and families to assess and manage learning differences, and in rare instances may conduct screenings for younger children.
- Academic specialists work in the Primary and Lower Schools, where skills can vary widely and added support has proven to have the greatest benefit.

- At every age, counselors are available to work with students, faculty, and parents, as needed.

Students as real-world literary and art critics

- Authenticity and meaningful experiences are critical. Once a concept has been introduced, Lab teachers make it that much more meaningful by bridging disciplines to reinforce an idea, bringing the real world into the classroom or taking the class into the real world. By taking children to a working drawbridge or inviting an engineer to share actual plans, Lab allows children to see concepts in action.

Even within a challenging environment like Lab’s, it’s important to recognize that children learn in different ways and that even bright children may need tailored support. The Schools work to respond to the needs of each child while maintaining academic and evaluative standards.

- Teachers work to differentiate instruction in order to accommodate a variety of learning styles.
- Learning coordinators are available to work with teachers and families to assess and manage learning differences, and in rare instances may conduct screenings for younger children.
- Academic specialists work in the Primary and Lower Schools, where skills can vary widely and added support has proven to have the greatest benefit.

- At every age, counselors are available to work with students, faculty, and parents, as needed.

Students as real-world literary and art critics

- Authenticity and meaningful experiences are critical. Once a concept has been introduced, Lab teachers make it that much more meaningful by bridging disciplines to reinforce an idea, bringing the real world into the classroom or taking the class into the real world. By taking children to a working drawbridge or inviting an engineer to share actual plans, Lab allows children to see concepts in action.
Lab teachers, some of the best in the nation, keep classrooms dynamic and students inspired.

The University of Chicago Laboratory Schools make a commitment to hire best-in-class teachers, who possess the background and skills to inspire and engage students. Faculty are chosen for their experience with students at a specific grade level, and as children make their way through the learning and growing process, Lab teachers serve as mentors and guides. They bring to their classes an excitement about learning that is contagious.

Lab teachers see learning as a two-way street—not only imparting information to students but creating an exchange between adult and child, child and peer, to question and explore.

Lab believes it is important to have practiced teachers. All educators come to the Schools with at least several years of teaching experience, and eight out of ten Lab faculty have, at minimum, a master’s degree and often more. And the school is deeply committed to ensuring that the faculty reflects the same multicultural diversity found in our student body.

Teachers routinely take part in professional development activities so that they may infuse each child’s class with new ideas, energy, and creativity. The effort reflects our strong belief in lifelong learning—to the great benefit of the students.

Teaching that keeps adapting and evolving

Nursery, Kindergarten, and Primary teachers have attended highly specialized sessions on early childhood teaching methods. In the Middle and High Schools, faculty are using a teaching structure, the “Harkness Discussion,” imported from the Exeter Humanities Institute. In these classes, there’s no need to raise hands—students share the responsibility to work as a community and carry on a respectful but challenging discussion of the material at hand. Several student observers take notes and then bring their reflections and leadership into the debate.

Lab teachers are recognized by our community—and nation—as leaders in their field.

> Nine Lab teachers have won Chicago’s prestigious Golden Apple Award for Excellence in Teaching—more than any other school in the city. Others have received the Kohl McCormick Early Childhood Teaching Award.

> A MacArthur “genius” award and the Erikson Institute Award for Service to Children are among the achievements of author/teacher Vivian Paley, who spent most of her career at Lab. (Lessons from her acclaimed book You Can’t Say You Can’t Play shape Lab’s approach.)

> Lab teachers contributed to the University of Chicago Mathematics Project, the largest university-based mathematics curriculum project in the country. Their results included the nationally acclaimed Everyday Mathematics texts for elementary school students and Transition Mathematics, a middle school pre-algebra text.

> Blue Balliett, world-renowned author of Chasing Vermeer, The Wright Three, and The Calder Game, based the acclaimed children’s mysteries on her experiences teaching students at Lab. (Read one to get a great sense of life around Lab.)

> Lab classrooms are routinely visited by teachers and administrators from around the world who wish to experience firsthand the way Lab teachers integrate Dewey’s philosophy into their classroom experience.

> Having taught for decades at U-High, Wayne Brasler won the Missouri Honor Medal for Distinguished Service in Journalism.

> Lab teachers are recognized by our community—and nation—as leaders in their field.
Children in nursery and kindergarten are ready to begin cultivating their sense of place in the greater world. In making the transition from home to school, they are ready to learn to listen actively to others, to accept differences, and to care about each other. They are learning about point of view—how to express theirs and how to respect another's. Teachers use a child's natural desire for fairness as the beginning of a school-wide curriculum that highlights equity and justice. Within the caring community of Lab, children learn to be caring citizens of the world.

Parents are encouraged to spend time in the classroom. Through their volunteer efforts, nursery and kindergartners are exposed to families' many cultures and traditions, unique areas of interest, and skill. Most importantly, they see that one's enthusiasm for learning goes beyond school years.

Community Life

Each N/K class opens directly to an outdoor play area, seamlessly connecting indoor and outdoor learning and bringing nature, weather, and science directly into the learning experience. Those same outdoor play areas connect neighboring N/K classrooms—all of which are on the first floor—building a child's sense of community and encouraging teacher collaboration.

Classrooms, as shown above, are designed so that a child can function as independently as possible, helping the child experience authentic competence as he or she chooses what to do. Once the child has learned the routines and how the rooms works, the child is free to be in charge of time within those constructs. It is the child's world in which to enjoy, explore, think, and play. In kindergarten the scope widens to include leaving and play. In kindergarten the child is free to be once the child has learned the competence as he or she chooses what to do.

Community Life

Children in nursery and kindergarten are ready to begin cultivating their sense of place in the greater world. In making the transition from home to school, they are ready to learn to listen actively to others, to accept differences, and to care about each other. They are learning about point of view—how to express theirs and how to respect another's. Teachers use a child's natural desire for fairness as the beginning of a school-wide curriculum that highlights equity and justice. Within the caring community of Lab, children learn to be caring citizens of the world.

Parents are encouraged to spend time in the classroom. Through their volunteer efforts, nursery and kindergartners are exposed to families' many cultures and traditions, unique areas of interest, and skill. Most importantly, they see that one's enthusiasm for learning goes beyond school years.

Community Life

Each N/K class opens directly to an outdoor play area, seamlessly connecting indoor and outdoor learning and bringing nature, weather, and science directly into the learning experience. Those same outdoor play areas connect neighboring N/K classrooms—all of which are on the first floor—building a child's sense of community and encouraging teacher collaboration.

Classrooms, as shown above, are designed so that a child can function as independently as possible, helping the child experience authentic competence as he or she chooses what to do. Once the child has learned the routines and how the rooms works, the child is free to be in charge of time within those constructs. It is the child's world in which to enjoy, explore, think, and play. In kindergarten the scope widens to include leaving and play. In kindergarten the child is free to be once the child has learned the competence as he or she chooses what to do.

Community Life

Each N/K class opens directly to an outdoor play area, seamlessly connecting indoor and outdoor learning and bringing nature, weather, and science directly into the learning experience. Those same outdoor play areas connect neighboring N/K classrooms—all of which are on the first floor—building a child's sense of community and encouraging teacher collaboration.

Classrooms, as shown above, are designed so that a child can function as independently as possible, helping the child experience authentic competence as he or she chooses what to do. Once the child has learned the routines and how the rooms works, the child is free to be in charge of time within those constructs. It is the child's world in which to enjoy, explore, think, and play. In kindergarten the scope widens to include leaving and play. In kindergarten the child is free to be once the child has learned the competence as he or she chooses what to do.

Community Life

Each N/K class opens directly to an outdoor play area, seamlessly connecting indoor and outdoor learning and bringing nature, weather, and science directly into the learning experience. Those same outdoor play areas connect neighboring N/K classrooms—all of which are on the first floor—building a child's sense of community and encouraging teacher collaboration.

Classrooms, as shown above, are designed so that a child can function as independently as possible, helping the child experience authentic competence as he or she chooses what to do. Once the child has learned the routines and how the rooms works, the child is free to be in charge of time within those constructs. It is the child's world in which to enjoy, explore, think, and play. In kindergarten the scope widens to include leaving and play. In kindergarten the child is free to be once the child has learned the competence as he or she chooses what to do.
Primary School

Academic Life
As children move into the Primary School (grades one and two) there is a natural segue from an environment where the child is the curriculum to one in which the curriculum is more constructed and guided learning down specific paths. New skills and challenges are added in developmentally appropriate ways, and learning is structured to support the purposeful freedom we value and to provide each child with opportunities to move about, investigate, inquire, experience, and exchange ideas. Teachers present children with real cognitive challenges while creating space for each to absorb and construct new ideas.

A great deal of careful and thoughtful planning goes into creating differentiated classroom environments that capture children’s imagination and curiosity and help them experience joy in learning. Students are encouraged to write frequently, and as independently as they are able—both fiction and non-fiction. In the process of writing, children incorporate both invented and conventional spelling as they generate topics, research, revise, and even “published.” Relatively, small group instruction, partner reading, and individual reading are part of everyday routines.

During the Primary years, math concepts become hands-on projects allow students to learn the importance of cooperation and ignite interest and respect for each individual’s ideas.

Students may use graphing skills in a social studies or a science project, or students might measure time on clocks marked at five-minute intervals and count money using nickels. These varied experiences help students develop mathematical reasoning and scientific inquiry as they make conjectures, gather evidence, and build supporting arguments.

Children leave the classroom for formal art instruction starting in first grade, and computer classes are added in second. Through art, music, and physical education, Primary School children use all manner of media to express themselves and their creativity and are encouraged to view themselves as instruments to see, hear, and feel the world around them. The computer curriculum provides students with foundation skills that will be transferable as technology changes.

Community Life
Life requires that children learn respect for others and a sense of personal and academic and social skills as the class discusses the upcoming day’s schedule, problem solves, shares experiences, and plans class activities. Children learn to express ideas and opinions, and to listen to, and have respect for, other points of view.

Our goal is to create an environment in which children have the opportunity and confidence to take risks as they share things of importance by speaking and listening to one another.

Community Life
Life requires that children learn respect for others and a sense of personal and academic and social skills as the class discusses the upcoming day’s schedule, problem solves, shares experiences, and plans class activities. Children learn to express ideas and opinions, and to listen to, and have respect for, other points of view.

In Primary School, as in every grade, preparing children to become responsible adults involves the entire community—students, parents, teachers, and staff.

An important part of this is “class meeting” time. Part of a pedagogy known as the “Responsive Classroom,” the meetings are used to practice academic and social skills as the class discusses the upcoming day’s schedule, problem solves, shares experiences, and plans class activities. Children learn to express ideas and opinions, and to listen to, and have respect for, other points of view.

Our goal is to create an environment in which children have the opportunity and confidence to take risks as they share things of importance by speaking and listening to one another.

Storytelling
A unique element of Lab’s thoughtful library curriculum

When librarians sit kindergarteners, first, and second graders down to hear a story, they are executing a core element of Lab’s library curriculum. Storytelling has a long history at Lab—the librarians have recorded every story told each week since 1954, and they almost never repeat a story to the same children as they grow from kindergarten through second grade. The librarian tells each story from memory, in the oral tradition. It’s not just for fun; storytelling enhances a child’s imagination, visualization, and memory.

Appreciation of rhythm and pattern of language
Speaking and listening skills

Kids tweet with Chicago Professor Peter Reynolds, draw dots using traditional supplies like watercolors and teddy if not art tools, and take pictures of circles throughout Earl Shapiro Hall, globes, clocks, a fish bowl, wheels, rolls of tape, and wheels, rolls of tape.

Children get a sense for the scale of Greek architecture working in pairs to draw and watercolor-using six-foot-tall drawings of Greek columns, to a spectacular show of “monumental,” the 72 columns, line the lobby at Earl Shapiro Hall for all to see.

A visit to the school swimming pool asks children to act out the penguin behaviors they’ve studied over a month-long project:

Hands-on projects allow students to learn the importance of cooperation and ignite interest and respect for each individual’s ideas.

Students may use graphing skills in a social studies or a science project, or students might measure time on clocks marked at five-minute intervals and count money using nickels. These varied experiences help students develop mathematical reasoning and scientific inquiry as they make conjectures, gather evidence, and build supporting arguments.

Children leave the classroom for formal art instruction starting in first grade, and computer classes are added in second. Through art, music, and physical education, Primary School children use all manner of media to express themselves and their creativity and are encouraged to view themselves as instruments while creating space for each to absorb and construct new ideas.

A great deal of careful and thoughtful planning goes into creating differentiated classroom environments that capture children’s imagination and curiosity and help them experience joy in learning. Students are encouraged to write frequently, and as independently as they are able—both fiction and non-fiction. In the process of writing, children incorporate both invented and conventional spelling as they generate topics, research, revise, and even “published.” Relatively, small group instruction, partner reading, and individual reading are part of everyday routines.

During the Primary years, math concepts become hands-on projects allow students to learn the importance of cooperation and ignite interest and respect for each individual’s ideas.

Students may use graphing skills in a social studies or a science project, or students might measure time on clocks marked at five-minute intervals and count money using nickels. These varied experiences help students develop
Lower School

Academic Life
Developmentally, Lower School students third through sixth grade have an important role to play in disparate learning, garnered in younger years, and sustained into more sophisticated thinking and peer relationships. They move from grade to grade with increasing confidence in their ability to tackle questions and make sense of multiple ideas.

Lower School children make an important leap when they go from learning to read to reading to learn. With this skill comes the ability to acquire and master new intellectual challenges, making it the right time to start additional specialist-taught classes, starting in third grade: science and world languages with a choice of French, German, Mandarin Chinese, or Spanish. (Lower Schoolers, of course, continue with specialist-taught classes introduced in earlier grades: art, computer science, library, music, and PE.)

Collaborative activities also teach the importance of cooperation, responsibility, and a sense of the larger world—fostering each individual’s ideas. Using strategies such as tiered assignments, flexible grouping, and integrated curricula, teachers make skillful adjustments for each student’s capacity for independence and complexity. And careful thought and planning goes into creating classroom environments that foster—and sustain—the intellectual curiosity children bring to learning.

Teachers encourage students’ imagination and initiative even while guiding them in productive ways.

Community Life
The Schools have shaped programs for each Lower School grade that address a broad range of social and emotional development.

These programs allow children to have many shared experiences and expectations but recognize the differences in how each child learns. A variety of Lower School activities are symbolic of the value Lab places on our broader community. Lower School students are at just the right age to be both “big buddies” and “little buddies.” As big buddies, they experience the sense of mastery and pride that comes from reading to younger children, helping them to write a story or carve a pumpkin. As little buddies to our Middle and High Schoolers, they get to work with and learn from older students. About once a month the entire Lower School assembles for events, performances, and presentations that connect the learning in classrooms with the larger community.

Children have a natural inclination to use the advantages they have to help others, and we seek to reinforce these “habits of goodness” in and out of the classroom. Included in this (and in lots of other ways) are our many parents, who are welcomed into our classrooms with the children.

Lending authenticity to the lesson

Getting out into the real world (or bringing it into the classroom) makes lessons more meaningful.

>Chicago Blackhawks fans an integrated learning experience blending math (calculating goals against average), geography (filing players’ hometowns on maps), and composition (writing persuasive letters to teams asking fans—and sometimes getting—a program or paraphernalia).

In the heart of a world-class university

Lower Schoolers routinely benefit from UChicago minds and resources:

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

On a University chemistry hall, a professor demonstrates phases of matter: solid, liquid, and gases, and procedures too costly or (thrillingly) dangerous for the classroom.

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

Lending authenticity to the lesson

Getting out into the real world (or bringing it into the classroom) makes lessons more meaningful.

>Chicago Blackhawks fans an integrated learning experience blending math (calculating goals against average), geography (filing players’ hometowns on maps), and composition (writing persuasive letters to teams asking fans—and sometimes getting—a program or paraphernalia).

In the heart of a world-class university

Lower Schoolers routinely benefit from UChicago minds and resources:

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

On a University chemistry hall, a professor demonstrates phases of matter: solid, liquid, and gases, and procedures too costly or (thrillingly) dangerous for the classroom.

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

Lending authenticity to the lesson

Getting out into the real world (or bringing it into the classroom) makes lessons more meaningful.

>Chicago Blackhawks fans an integrated learning experience blending math (calculating goals against average), geography (filing players’ hometowns on maps), and composition (writing persuasive letters to teams asking fans—and sometimes getting—a program or paraphernalia).

In the heart of a world-class university

Lower Schoolers routinely benefit from UChicago minds and resources:

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

On a University chemistry hall, a professor demonstrates phases of matter: solid, liquid, and gases, and procedures too costly or (thrillingly) dangerous for the classroom.

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

Lending authenticity to the lesson

Getting out into the real world (or bringing it into the classroom) makes lessons more meaningful.

>Chicago Blackhawks fans an integrated learning experience blending math (calculating goals against average), geography (filing players’ hometowns on maps), and composition (writing persuasive letters to teams asking fans—and sometimes getting—a program or paraphernalia).

In the heart of a world-class university

Lower Schoolers routinely benefit from UChicago minds and resources:

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

On a University chemistry hall, a professor demonstrates phases of matter: solid, liquid, and gases, and procedures too costly or (thrillingly) dangerous for the classroom.

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

Lending authenticity to the lesson

Getting out into the real world (or bringing it into the classroom) makes lessons more meaningful.

>Chicago Blackhawks fans an integrated learning experience blending math (calculating goals against average), geography (filing players’ hometowns on maps), and composition (writing persuasive letters to teams asking fans—and sometimes getting—a program or paraphernalia).

In the heart of a world-class university

Lower Schoolers routinely benefit from UChicago minds and resources:

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

On a University chemistry hall, a professor demonstrates phases of matter: solid, liquid, and gases, and procedures too costly or (thrillingly) dangerous for the classroom.

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

Lending authenticity to the lesson

Getting out into the real world (or bringing it into the classroom) makes lessons more meaningful.

>Chicago Blackhawks fans an integrated learning experience blending math (calculating goals against average), geography (filing players’ hometowns on maps), and composition (writing persuasive letters to teams asking fans—and sometimes getting—a program or paraphernalia).

In the heart of a world-class university

Lower Schoolers routinely benefit from UChicago minds and resources:

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

On a University chemistry hall, a professor demonstrates phases of matter: solid, liquid, and gases, and procedures too costly or (thrillingly) dangerous for the classroom.

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

Lending authenticity to the lesson

Getting out into the real world (or bringing it into the classroom) makes lessons more meaningful.

>Chicago Blackhawks fans an integrated learning experience blending math (calculating goals against average), geography (filing players’ hometowns on maps), and composition (writing persuasive letters to teams asking fans—and sometimes getting—a program or paraphernalia).

In the heart of a world-class university

Lower Schoolers routinely benefit from UChicago minds and resources:

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

On a University chemistry hall, a professor demonstrates phases of matter: solid, liquid, and gases, and procedures too costly or (thrillingly) dangerous for the classroom.

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

Lending authenticity to the lesson

Getting out into the real world (or bringing it into the classroom) makes lessons more meaningful.

>Chicago Blackhawks fans an integrated learning experience blending math (calculating goals against average), geography (filing players’ hometowns on maps), and composition (writing persuasive letters to teams asking fans—and sometimes getting—a program or paraphernalia).

In the heart of a world-class university

Lower Schoolers routinely benefit from UChicago minds and resources:

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

On a University chemistry hall, a professor demonstrates phases of matter: solid, liquid, and gases, and procedures too costly or (thrillingly) dangerous for the classroom.

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

Lending authenticity to the lesson

Getting out into the real world (or bringing it into the classroom) makes lessons more meaningful.

>Chicago Blackhawks fans an integrated learning experience blending math (calculating goals against average), geography (filing players’ hometowns on maps), and composition (writing persuasive letters to teams asking fans—and sometimes getting—a program or paraphernalia).

In the heart of a world-class university

Lower Schoolers routinely benefit from UChicago minds and resources:

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

On a University chemistry hall, a professor demonstrates phases of matter: solid, liquid, and gases, and procedures too costly or (thrillingly) dangerous for the classroom.

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

Lending authenticity to the lesson

Getting out into the real world (or bringing it into the classroom) makes lessons more meaningful.

>Chicago Blackhawks fans an integrated learning experience blending math (calculating goals against average), geography (filing players’ hometowns on maps), and composition (writing persuasive letters to teams asking fans—and sometimes getting—a program or paraphernalia).

In the heart of a world-class university

Lower Schoolers routinely benefit from UChicago minds and resources:

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.

On a University chemistry hall, a professor demonstrates phases of matter: solid, liquid, and gases, and procedures too costly or (thrillingly) dangerous for the classroom.

>Fourth graders visit a UChicago biology lab to see how scientists clone green fluorescent protein (GFP) into mice—which makes them glow—and learn how GFP can be used to tag and track certain genes.
Middle School

Children entering the Middle School years (seventh and eighth grades) begin an intense period of intellectual, social, emotional, physical, and moral growth. Lab’s Middle School teachers are actively interested in students at this developmental stage, and they create a program that balances independence and challenge with the support Middle Schoolers need. Teachers work to bring authenticity into the learning process by building real-world and cross-disciplinary experiences into the curricula. Because students are becoming more independent, in eighth grade, Lab introduces the opportunity for kids to select arts and other elective courses.

In Middle School, a Middle School student will connect with almost a dozen teachers specializing in different areas, each with unique interests and styles. It’s one way Lab helps prepare young people to learn effectively as they grow into young adulthood. Strong teacher/student relationships give students the confidence to learn, putting to work concepts and putting to work concepts addressed in advisory: teamwork, independence, ingenuity. The eighth grade travels to Washington, D.C.—a culmination of their humanities curriculum and cap to life in Middle School.

A range of new opportunities and activities gives Middle School students greater responsibility and independence.

Understanding the diversity of the world we live in and developing an open-mindedness and sense of responsibility to our greater community are lessons that infuse life in the Middle School through activities including:

- The seventh grade humanities curriculum asks students to identify and interview someone from whom they feel different whether because of race, religion, or some other distinction. The activity takes students out of their comfort zones and helps them develop a respect for and an understanding of difference.
- Every Friday, every Middle Schooler spends an activity period doing something of their own choosing from an ever-changing list of electives: ice skating, Star Wars Club, basketball, short films, Magic (the card game), or maybe chess.
- Students read a historical figure, or institution from Chicago around the turn of the century. After weeks of preparation, including writing a formal research paper, they give a poster presentation to family and friends.
- Seventh graders gently leave apart an “owl pellet” (what remains in an owl’s throat after a rodent or bird has been digested) and then identify and rebuild a virtually complete animal skeleton of tiny, delicate bones.
- Students conduct research on an event, historical figure, or institution from Chicago around the turn of the century. After weeks of preparation, including writing a formal research paper, they give a poster presentation to family and friends.
- Students translate the Declaration of Independence into everyday language, helping the student-author understand the importance of such an article and many of the amendments.
- Starting in seventh grade, students use a method known as a “Harkness Discussion” (imported from Phillips Exeter Academy). No hands are raised. No teacher stands in front. Instead, students speak in turn, creating a debate infused with respect and maturity. The ability to engage in constructive dialogue is a hallmark of a Lab education.
- As part of the Adolescent Substance Abuse Program, Lab’s Middle School students visit Lab during each year to discuss anxiety and physiology, and sixth graders get a look at the results of common drugs on human body parts (think nicotine-stained “black lung”).

Interpersonal sports are an important part of Middle School life. Importantly, Lab encourages participation with “everyone plays” approach so kids can explore the world of competitive sports without risk of failure.

- Baseball
- Basketball
- Cross Country
- Soccer
- Track & Field
- Volleyball (girls)

A lot happens outside the Middle School classroom.

- Ethnics, cultural, and religious student associations
- Diplomacy group
- History and humanities clubs
- Jazz band
- Newspaper and yearbook
- Math teams
- Theater productions (mounted twice a year)
- Student council and, of course, student council-sponsored dances
- Science club

Academic Life

Community Life

A more sophisticated scope of thinking and learning

Athletics in the Middle School

Lab encourages participation with “everyone plays” approach so kids can explore the world of competitive sports without risk of failure.
High School

U-High's course offerings allow for a significant range of choice

- Advanced Placement and Advanced Topic courses in 19 subjects
- Acting Studio
- African American History
- Anna Karenina
- Computer Architecture
- Chemistry and Physics
- Digital Music Production and Composition
- Discrete Mathematics and Statistics
- Environmental Science
- Graphic Novels
- The Holocaust
- Human Behavior
- Islam and Modernity
- Literature, Rhetoric, and Morality
- Literary Monsters
- Macroeconomics
- Mixed Media Art
- Newspaper
- Photography
- Performance and Competition in Ancient Greece
- Word Play: Elymology and Linguistics
- World languages: French, German, Latin, Mandarin Chinese, and Spanish
- Power, Identity, and Resistance

Academic Life

High expectations go hand in hand with real, personal freedom. In the High School, also known as University High School or U-High, students become accustomed to a demanding workload and high expectations. Each year year students are better able to think for themselves, challenge assumptions, and, most importantly, take on increasing levels of responsibility for their own education.

Lab attracts passionate students who excel academically and are excited by teachers and a curriculum that will help them expand their intellectual comfort zone. They are ready to take advantage of all of our school has to offer. Learning to balance it all takes effort, but our students will tell you it’s exciting, and our graduates that it was worth it.

The basic curriculum emphasizes analytical reading, writing, research, strong math and science skills, and broad access to the arts. In keeping with independent schools across the country, U-High has started to move away from denoting classes as Advanced Placement, instead offering Advanced Topic courses. In doing so, the school no longer has to follow a curriculum prescribed by an outside testing service, allowing faculty to shape rich and challenging courses. Most students take at least one of the 19 advanced courses offered at Lab and many go on to take related AP exams.

Senior May Project

A U-High tradition since 1969, May Project calls on all the skills and maturity seniors have developed during their time at Lab. It’s a chance for students to explore a field of interest, or learn something completely new.

For her six “China sisters,” a student creates a memoir-length book that recounts their shared experiences growing up together after all seven girls were adopted at the same time by Chicago families.

A boy serves as a “manny” (male nanny) for a ten-month-old as he thinks about whether a life in early childhood development might be his calling.

A student takes a greuling first responder/wilderness training course.

A girl shadows a University physician who works in a clinic for families receiving federal assistance.

Other students work in businesses, write blogs, learn musical instruments, compose music, or make art.

U-High’s are on the nation’s radar

- U-High’s student newspaper and yearbook consistently win state and national awards and are considered to be among the elite student publications in the United States.
- Lab has had four finalists and multiple semi-finalists in the Intel Science Talent Search, as well as a finalist and two semi-finalists in the Siemens Competition in Math, Science & Technology.
- Students routinely get published in newspapers and literary journals, and one reached the finals in the YoungArts competition sponsored by the National Endowment for the Arts.
- The math and science teams have finished in the state’s top three for years. Dozens of U-Highers qualified for the American Invitational Mathematics Exam, and at least one has participated in the elite Mathematical Olympiad.
- In recent years, nearly 20 percent of the class became National Merit semi-finalists.
- A Labbie placed in the Senior Jazz Ensemble at the Lions Jazz Education Association competition, which requires students to both play challenging excerpts and improvise on the spot.
- Debate team members win at the national level, and the model UN team perennially ranks in the top five in the nation.

Junior May Project

- In her summer job as a “manny” for a ten-month-old, a student gains a real understanding of the experiences of a young child.

U-High is widely recognized for its literature and art. The nation’s radar regularly monitors U-High students as they pursue their passions and interests.

- Dozens of U-Highers are on hand with real, personal freedom.

Academic Life

Levels of responsibility for their academic life.

In the High School, also known as University High School or U-High, students become accustomed to a demanding workload and high expectations. Each year students are better able to think for themselves, challenge assumptions, and, most importantly, take on increasing levels of responsibility for their own education.

Lab attracts passionate students who excel academically and are excited by teachers and a curriculum that will help them expand their intellectual comfort zone. They are ready to take advantage of all the school has to offer. Learning to balance it all takes effort, but our students will tell you it’s exciting, and our graduates that it was worth it.

The basic curriculum emphasizes analytical reading, writing, research, strong math and science skills, and broad access to the arts. In keeping with independent schools across the country, U-High has started to move away from denoting classes as Advanced Placement, instead offering Advanced Topic courses. In doing so, the school no longer has to follow a curriculum prescribed by an outside testing service, allowing faculty to shape rich and challenging courses. Most students take at least one of the 19 advanced courses offered at Lab and many go on to take related AP exams.

Senior May Project

A U-High tradition since 1969, May Project calls on all the skills and maturity seniors have developed during their time at Lab. It’s a chance for students to explore a field of interest, or learn something completely new.

For her six “China sisters,” a student creates a memoir-length book that recounts their shared experiences growing up together after all seven girls were adopted at the same time by Chicago families.

A boy serves as a “manny” (male nanny) for a ten-month-old as he thinks about whether a life in early childhood development might be his calling.

A student takes a greuling first responder/wilderness training course.

A girl shadows a University physician who works in a clinic for families receiving federal assistance.

Other students work in businesses, write blogs, learn musical instruments, compose music, or make art.

U-High’s are on the nation’s radar

- U-High’s student newspaper and yearbook consistently win state and national awards and are considered to be among the elite student publications in the United States.
- Lab has had four finalists and multiple semi-finalists in the Intel Science Talent Search, as well as a finalist and two semi-finalists in the Siemens Competition in Math, Science & Technology.
- Students routinely get published in newspapers and literary journals, and one reached the finals in the YoungArts competition sponsored by the National Endowment for the Arts.
- The math and science teams have finished in the state’s top three for years. Dozens of U-Highers qualified for the American Invitational Mathematics Exam, and at least one has participated in the elite Mathematical Olympiad.
- In recent years, nearly 20 percent of the class became National Merit semi-finalists.
- A Labbie placed in the Senior Jazz Ensemble at the Lions Jazz Education Association competition, which requires students to both play challenging excerpts and improvise on the spot.
- Debate team members win at the national level, and the model UN team perennially ranks in the top five in the nation.

Junior May Project

- In her summer job as a “manny” for a ten-month-old, a student gains a real understanding of the experiences of a young child.

U-High is widely recognized for its literature and art. The nation’s radar regularly monitors U-High students as they pursue their passions and interests.

- Dozens of U-Highers are on hand with real, personal freedom.
navigate the financial aspects of a college education. It almost goes without saying that virtually every U-Higher graduates from a four-year college, and they attend outstanding colleges around Chicago and the country.

Community Life

In U-High, independents—group and that’s just how we want them to be.

Students often do not significant time outside of regular school hours to many different extracurricular activities. And the kids who make the most of all U-High has to offer are the ones who seem most excited by what the Laboratory Schools and life are all about.

Sports are a major draw (65 percent of all U-Highers play on at least one team), but among the many offerings are some that attract an especially large or integrated group of participants:

- U-High’s journalism program is one of the best in the nation and has sent many a student into the world armed with impeccable communications skills whether or not they are drawn to a career in journalism.
- The debate and the Model United Nations teams take their energy and intensity to tournaments across the United States.
- U-Highers are an outstanding college around 40 activities, academic teams, and student-run clubs.
- The Laboratory Schools and life are all about.

Sports are a major draw (65 percent of all U-Highers play on at least one team), but among the many offerings are some that attract an especially large or integrated group of participants:

- U-High’s journalism program is one of the best in the nation and has sent many a student into the world armed with impeccable communications skills whether or not they are drawn to a career in journalism.
- The debate and the Model United Nations teams take their energy and intensity to tournaments across the United States.
- U-Highers are

Athletics draws hundreds for the love of the game—and to win

U-High fields more than 28 sports teams that compete in the Independent School League and the Illinois High School Association (IHSA). Over the past decade our teams have competed—and won—at high levels of competition including 45 IHSA regional and sectional championships in 12 different sports.

They achieve this within a “no-cut” policy system that encourages students to play (nearly 65 percent of U-Highers play on at least one team) and distinguishes U-High from most athletic programs in the country.

Annual student retreats

Included in a student’s tuition is annual student retreats. Retreats offer social connections and support students in the context of their roles as class members. An added benefit? They’re fun.

Freshmen: Before school, freshmen go off campus for two days of team-building activities and conversation about what it means to be a student in the U-High community.

Sophomores: In early fall, a two-night retreat gives kids a chance to do some community service together as they learn more about their service learning requirement.

Juniors: Over three days and two nights, juniors work in large and small groups to examine their roles as class members. An added benefit? They’re fun.

Seniors: It’s January; it’s cold, and a little “senorita” might be hitting. What better way to revitalize these students than a weekend of skiing, skating, sledding, hanging, and playing with their friends?

Summer Link internship program

Through Summer Link, students have hands-on experiences not normally available to high school students. This unique partnership with the University places qualified U-Highers into paid summer internships with UChicago scientists and professors, or businesses connected to Lab or University alumni. These include:

- Chemistry Professor and Director, Materials Research Science and Engineering Center Ka Yee C. Lee
- The University of Chicago Press
- The Computation Institute, a joint initiative between UChicago and Argonne National Laboratory
- Ariel Investments
- William B. Ogden Distinguished Service Professor of Economics (and Freakonomics author) Steven D. Levitt
- Morningstar

Lab hosts more than 40 activities, academic teams, and student-run clubs

> Model United Nations
> Poetry Slam/Louder than a Bomb
> Quiditch
> Renaissance Literary magazine and DeFame history journal
> Science and Math teams
> Scholastic Bowl
> Spectrum (LGBTQ)
> Student Council and Cultural Union
> U-Highlights yearbook
The Laboratory Schools offer engaging and entertaining opportunities for learning beyond regular school hours and during summer vacation. Besides being fun, Auxiliary Programs extend the Schools’ mission by simplifying alternatives that increase learning and are always age appropriate. Many activities allow students to experience academic concepts and topics that go beyond Lab’s regular curriculum in creative ways. Complete information about Extended Day and Summer Lab is available on the school website.

**Admissions**

Thank you so much for your interest in Lab! We hope this information has given you a good introduction to our school. Our goal is to welcome you to the Lab community, and help you learn about our unique culture and academic program. We believe each child is an individual who possesses special qualities that cannot always be captured by test scores and applications alone. We seek to learn more about our applicants through playgroups, classroom visits, interviews, student shadow days, and tours. Every family who applies will have an opportunity to visit the Schools and meet personally with an admissions representative. If you feel that Lab might be a fit for your child, we invite you to learn more about our admissions process.

**Admissions Fast Facts**

- Lab’s application process includes an online application; fee; a school tour or open house; a playgroup class visit or shadow day; student and parent interviews; current and prior grade reports; and teacher and/or principal school recommendations (all grade specific).
- The formal application process typically takes place one year in advance of enrollment.
- Most children enter Lab at Nursery 3 (three-year-olds) or ninth grade. Space availability at other grade levels varies year to year.
- Families should apply for Nursery 3 when their child is two years old. Applicants must turn three before September 1 of their enrollment year.
- Prior to application, prospective high school students are encouraged to attend the annual U-High Open House, which takes place each year in October or November.
- Ninth grade applicants must be in eighth grade (or its equivalent) at the time of application and must take the Independent School Entrance Exam (ISEE).  
- Tours of the Laboratory Schools are generally available only to families who have submitted a formal application.
- Each year, Lab provides financial assistance to help meet the needs of students and their families. Lab does not have a specific income limit for financial aid. Rather, the Financial Aid Committee examines a family’s entire financial picture, including income, expenses, and other circumstances.

**Learn More About Lab**

Go online: [www.ucls.uchicago.edu/admission](http://www.ucls.uchicago.edu/admission)

Speak to an admission officer: 773-702-9451

Email us: admissions@ucls.uchicago.edu

**Lab after hours**

The Laboratory Schools offer engaging and entertaining opportunities for learning beyond regular school hours and during summer vacation. Besides being fun, Auxiliary Programs extend the Schools’ mission by simplifying alternatives that increase learning and are always age appropriate. Many activities allow students to experience academic concepts and topics that go beyond Lab’s regular curriculum in creative ways. Complete information about Extended Day and Summer Lab is available on the school website.

**Extended Day**

Nearly 600 students in nursery through eighth grade participate in Extended Day, at the core of which is a series of daily programs. Up to five days a week, teachers in-training lead a full afternoon of outdoor recreation and activities mixed with playful academic curriculum or study skills tailored to the child’s age. Starting in kindergarten, students may join special activities:

- **Sports Programs**
  - including basketball, soccer, fencing, and karate
- **Enrichment Classes**
  - including chess, robot building, and historic games
- **Music and Arts Programs**
  - including guitar, photography, improv, and drawing
- **Heritage Language Programs**
- **Swim Programs**
  - including lessons, family swim, and Lab’s own Midway Aquatics

**Summer Lab**

Our summer program attracts children from around the neighborhood and around the world. From academics to adventure, here’s a sample of what happens around campus once summer break hits:

- **Middle and High School Programs**
  - Investigating Chicago: Writer’s Workshop
  - Improv Fun-damentals
  - Summer Lab Journalism
  - Summer Lab on Stage
  - Sports camps
  - Geometry, Latin, computer science, and physical education for U-High credit

- **Nursery through Eighth Grade Programs**
  - Adventure Kids Day Camp
  - Drama Days Camp
  - Nature Explorers
  - Readers & Writers Workshops
  - Lego Robotics
  - Pi in the Eye: Visualizing Mathematics
  - And nearly a dozen different sports

**Summer Lab Field Study**

Often driven by faculty initiative and chaperoned by Lab faculty, Middle and High School students can explore different places and cultures, or offer community service in unique destinations. Recent trips have taken students to Yellowstone and the Grand Teton, Crow Canyon Archaeology Center, China, Ecuador, Sicily, and Cuba.

**Getting to Lab**

The Laboratory Schools are situated on the University of Chicago campus in Chicago’s historic Hyde Park/Kenwood community, which lies a few miles south of the Loop. Just west of the Museum of Science and Industry, the Laboratory Schools are easily accessible by car, CTA, and Metra. The Schools operate bus services to Chicago’s North Side, Bucktown, Wicker Park, Ukrainian Village, and South Loop neighborhoods, and families routinely arrange carpools.

**Admissions**

From Executive Director of Admissions & Financial Aid Irene M. Reed, ’92

**Lab after hours**

The Laboratory Schools offer engaging and entertaining opportunities for learning beyond regular school hours and during summer vacation. Besides being fun, Auxiliary Programs extend the Schools’ mission by simplifying alternatives that increase learning and are always age appropriate. Many activities allow students to experience academic concepts and topics that go beyond Lab’s regular curriculum in creative ways. Complete information about Extended Day and Summer Lab is available on the school website.

**Extended Day**

Nearly 600 students in nursery through eighth grade participate in Extended Day, at the core of which is a series of daily programs. Up to five days a week, teachers in-training lead a full afternoon of outdoor recreation and activities mixed with playful academic curriculum or study skills tailored to the child’s age. Starting in kindergarten, students may join special activities:

- **Sports Programs**
  - including basketball, soccer, fencing, and karate
- **Enrichment Classes**
  - including chess, robot building, and historic games
- **Music and Arts Programs**
  - including guitar, photography, improv, and drawing
- **Heritage Language Programs**
- **Swim Programs**
  - including lessons, family swim, and Lab’s own Midway Aquatics

**Summer Lab**

Our summer program attracts children from around the neighborhood and around the world. From academics to adventure, here’s a sample of what happens around campus once summer break hits:

- **Middle and High School Programs**
  - Investigating Chicago: Writer’s Workshop
  - Improv Fun-damentals
  - Summer Lab Journalism
  - Summer Lab on Stage
  - Sports camps
  - Geometry, Latin, computer science, and physical education for U-High credit

- **Nursery through Eighth Grade Programs**
  - Adventure Kids Day Camp
  - Drama Days Camp
  - Nature Explorers
  - Readers & Writers Workshops
  - Lego Robotics
  - Pi in the Eye: Visualizing Mathematics
  - And nearly a dozen different sports

**Summer Lab Field Study**

Often driven by faculty initiative and chaperoned by Lab faculty, Middle and High School students can explore different places and cultures, or offer community service in unique destinations. Recent trips have taken students to Yellowstone and the Grand Teton, Crow Canyon Archaeology Center, China, Ecuador, Sicily, and Cuba.

**Getting to Lab**

The Laboratory Schools are situated on the University of Chicago campus in Chicago’s historic Hyde Park/Kenwood community, which lies a few miles south of the Loop. Just west of the Museum of Science and Industry, the Laboratory Schools are easily accessible by car, CTA, and Metra. The Schools operate bus services to Chicago’s North Side, Bucktown, Wicker Park, Ukrainian Village, and South Loop neighborhoods, and families routinely arrange carpools.
Located on Stony Island Avenue, the newly built Earl Shapiro Hall is home to Lab’s Nursery/Kindergarten and Primary School (grades 1–2). This light-filled building is designed to maximize the independence a child feels during the school day and to seamlessly connect indoor and outdoor learning.

Three blocks to the west is Lab’s Historic Campus. Covering two city blocks, it is home to Lab’s Lower School (grades 3–5), Middle School (grades 6–8), and High School (grades 9–12). The architecturally impressive buildings date from the early 1900s and are currently undergoing a once-in-a-lifetime restoration and renovation.

Within our 615,000 square feet of space, students take full advantage of facilities, which include:

**Historic Campus**

- On the Historic Campus, 100 classrooms located throughout five distinct (yet connected) three- and four-story buildings and a gym complex
- At Earl Shapiro Hall, 35 classrooms and a gymnasium
- 13 wet science labs, renovated and wired for media presentations
- Full wireless capability and 14 servers linked to 1,250 regularly upgraded desk and laptop computers and iPads for in-school use
- Four computer labs
- Four libraries, with more than 100,000 volumes
- State-of-the-art digital language lab with 32 stations

**Earl Shapiro Hall**

- 250-seat Sherry Lansing Theater
- 150-seat drama studio
- 700-seat assembly hall (large enough to house an entire division)
- Spaces for music practice and performance
- Four art studios
- Scene and costume shops
- A kiln
- Photography and digital media facilities
- Gallery and display spaces

The most dramatic change to the Historic Campus is the new Gordon Parks Arts Hall. With 94,000 square feet on three stories, Lab now has arts spaces that match the talent of the students and teachers who will use them:

- The 250-seat Sherry Lansing Theater
- A 150-seat drama studio
- A 700-seat assembly hall (large enough to house an entire division)
- Spaces for music practice and performance
- Four art studios
- Scene and costume shops
- A kiln
- Photography and digital media facilities
- Gallery and display spaces

**Physical Education and Athletic Facilities**

- State-of-the-art fitness center (TriFIT system, treadmills, ellipticals, rowing machines, free weights)
- Ability to compete and train at University of Chicago facilities, most notably the award-winning Reavis Center for swimming and the Henry Crown Field House for track

**Footprint of Historic Campus**

- 2 city blocks
- 8 new/remodeled Lower and Middle School science labs
- 8 gargoyles

**The Gordon Parks Arts Hall**

- 4 art studios (all with north light)
- 700 seats in the new community assembly hall
- 100+ theater lighting instruments

**Earl Shapiro Hall interior space**

- 130,601 sq. ft.

**Earl Shapiro Hall outdoor space**

- 46,700 square feet
- 6 outdoor play spaces and Jackson Park
- 48 deciduous trees, 16 evergreen trees, 61 shrubs, and almost 30,000 ground cover, vine, and perennial plants

**A Century of Education**

- 1903: Blaine Hall
- 1904: Belfield Hall
- 1929: Sunny Gym
- 1960: High School
- 1993: Middle School
- 2000: Kovler Gym
- 2013: Earl Shapiro Hall
- 2015: Gordon Parks Arts Hall

**Physical Education and Athletic Facilities**

- Fully equipped training room
- Fully equipped gymnastics room
- Indoor five-lane swimming pool
- Five tennis courts
- Playing fields

Lab’s sports facilities are among the best in the city, and among private schools throughout the country:

- Five gyms
- Dance studio
- Fully equipped